
  

  

Abstract— We present a vision-based method for the 
autonomous geolocation of ground vehicles or unmanned 
mobile robots in forested environments. The method provides 
an estimate of the global horizontal position of a vehicle strictly 
based on finding a geometric match between a map of observed 
tree stems, scanned in 3D by sensors onboard the vehicle, to 
another stem map estimated from the structure of tree crowns 
observed in overhead imagery of the forest canopy. This 
method can be used in real-time as a complement to the 
traditional Global Positioning System (GPS) in areas where 
signal coverage is inadequate due to attenuation by the forest 
canopy, or due to intentional denied access. The method 
presented in this paper has two key properties that are 
significant: 1) It does not require a priori knowledge of the area 
surrounding the robot. 2) It uses the geometry of detected tree 
stems as the only input to determine horizontal geoposition.  

I. INTRODUCTION 

Traditional geolocation of terrestrial vehicles has primarily 
utilized GPS in different modes to achieve accuracies in the 
decimeter range (e.g. Differential and Real-time Kinematic 
techniques) [1]. Despite advances in GPS accuracies and 
measurement methods, GPS signals are easily attenuated in 
dense forest environments rendering the service unreliable 
for continuous and real-time localization purposes. Current 
efforts in geolocating rovers without GPS focus on dead 
reckoning techniques that use Inertial Measurement Units 
(IMU) [2]. Such approaches are prone to drifts in measured 
position that increase with time; thus posing limitations for 
rovers operating in close proximity to points of interest. 

Techniques such as Simultaneous Localization and Mapping 
(SLAM) have been utilized successfully to localize rovers in 
a variety of settings and scenarios [3,4]. SLAM focuses on 
building a local map of landmarks as observed by a rover 
and using it to estimate the rover’s local position in an 
iterative way [3,4]. Position errors could be initially high but 
tend to converge as more landmarks are observed and errors 
filtered. SLAM therefore does not require a priori 
knowledge of the locations of landmarks or that of the rover. 
The presented method in this paper is different from SLAM 
in that it provides a single (non-iterative) estimate of the 
global position of a rover at a particular pose based on a 
comparison between landmarks, in this case tree stems, 
observed by a rover and those analyzed from overhead 
georeferenced imagery of the forest canopy. In other words, 
the presented method can be invoked on demand and in a 
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standalone fashion that could be complementary to the 
traditional SLAM framework. 

The envisioned operational scenario of the presented 
algorithm is summarized as follows. A rover is initially 
assumed to be driving autonomously or via teleoperation in a 
forested area. The rover is anticipated to initially use GPS 
for localization. However, in situations where the GPS 
service becomes inaccessible or unreliable, the rover is 
expected to utilize the method of this paper for the duration 
of the GPS blackout. In essence, the proposed method is 
envisaged to act as a backup whenever the primary 
localization service is down. Alternatively, and to enable 
real-time redundancy in geoposition estimation, the 
proposed method could be used in tandem with the primary 
localization service. 

The localization method presented in this paper requires two 
types of input data. The first are 3D scans of the 
environment surrounding the rover by onboard Light 
Detection and Ranging (LiDAR) sensors. At a minimum, the 
rover is expected to employ a LiDAR with 360° horizontal 
Field-Of-View (FOV) in order to completely image the 
geometry of tree stems surrounding the rover. The second 
data input is an overhead high-resolution image of the 
exploration site. The overhead image can be acquired either 
by satellite or aerial means and needs to be orthorectified 
and geo-referenced. The sequence of operations required for 
geolocation of a rover using the method of this paper is 
summarized below: 

1. At a particular pose, a LiDAR scan is taken of the 
area surrounding the rover.  

2. LiDAR data is processed to detect and to label tree 
stems. Tree stem center locations are subsequently 
estimated and used to create a map of the horizontal 
locations of tree stem centers relative to the rover.  

3. The overhead georeferenced image of the forest 
canopy above the rover is processed in order to 
delineate individual tree crowns and estimate tree 
centers. A map is subsequently generated that 
contains the absolute horizontal locations of tree 
stem centers. 

4. Maps of tree stem centers estimated from LiDAR 
and from overhead imagery are matched in this 
step. The closest match is selected and 
subsequently used to calculate the rover’s 
horizontal geoposition. 

The vision-based localization algorithm is composed of three 
main components: 

• Tree Crown Identification, Delineation and 
Center Estimation from Overhead Imagery: 
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Delineates tree crowns and estimates tree centers 
from the geometric profile of the delineated tree 
crowns.  

• Tree Stem Center Estimation from Rover 
LiDAR Data: 

Identifies tree stems and estimates their centers 
from their 3D profiles. 

• Matching of Tree Centers from Overhead 
Imagery and LiDAR Data: 

Estimates rover’s horizontal geoposition by 
matching tree center maps generated from LiDAR 
to those obtained from overhead imagery. 

An important aspect in the above formulation of the 
algorithm is an assumption that deals with the growth profile 
of trees. In particular, the tree center estimation algorithms 
for the LiDAR and overhead image assume that the center of 
the tree crown coincides or is in close proximity to the center 
of the stem. This implies that for the purposes of this paper, 
tree crowns are assumed to have a symmetric horizontal 
profile, while tree stems are assumed to have an upright 
vertical profile. 

This paper is comprised of four main sections. Section II, III 
and IV discuss the different components of the presented 
localization algorithm, its properties and constraints. In 
Section V, test results based on real-world data obtained 
from an outdoor test campaign are presented and discussed. 
Concluding remarks are presented in Section VI. 

II. TREE CROWN IDENTIFICATION, DELINEATION AND 
CENTER ESTIMATION FROM OVERHEAD IMAGERY 

A map of the horizontal locations of tree stem centers is 
created from a given high-resolution satellite or aerial 
georeferenced ortho-photo. The purpose of this map is to 
provide a basis for comparison to the map generated from 
stem centers observed in the LiDAR data. Several automatic 
tree crown delineation algorithms have been previously 
developed. Wang et al utilizes a multi-step approach where 
Near Infra-Red (NIR) images are first used to mark tree 
centers, followed by intensity based segmentation to extract 
individual tree crowns [5]. Although effective, this approach 
was not followed because we were interested in developing 
an algorithm that can work with visible imagery without the 
need for NIR data.  

The main hypothesis that guided the development of the 
algorithm is the fact that the horizontal location of a tree 
center in an overhead image can be estimated from the 
geometric centroid of the delineated crown. That means that 
if a tree crown is detected and delineated, the tree center 
location can in principle be deduced with a horizontal 
accuracy limited to the pixel resolution of the image. Wang 
et al follows the same hypothesis but augment their 
algorithm with NIR intensity data of the tree canopy [5].  

Figure 1 outlines the process of tree delineation and center 
estimation using a sample image. First, non-green pixels (i.e. 
non-vegetation) are filtered out using a simple auto threshold 
approach. Second, the resultant color image is converted to a 
grayscale image with 8-bit resolution. With treetops as the 

only visible feature in the resulting image, a copy binary 
image is created and subsequently used in calculating the 
Euclidean distance transform for all objects in the image. 
The Euclidean distance transform d between two points 
(pixels), p and q, is defined as follows (in 2D): 

𝑑(𝑝, 𝑞) =  �∑ (𝑞𝑖 − 𝑝𝑖)22
𝑖=1         (1) 

The next step involves applying watershed segmentation to 
the 8-bit grayscale image with the distance transform as 
input. The purpose of the distance transform and watershed 
segmentation is to segment any cluster of treetops into their 
constituent trees. This step is necessary in the case of dense 
forests that have touching tree crowns.  

Following the segmentation step, the resultant image is 
composed of delineated tree crowns. The image is 
subsequently analyzed to estimate centers of trees by 
calculating the Euclidean centroid of each delineated object. 
The final product is a map composed of the x and y pixel 
coordinates of the centroid of each detected crown.  

A walkthrough of the algorithm using a sample image is 
shown in Figure 1. The overhead image used in this example 
is of a pine forest northeast of Lake Mize in Florida, USA. 
The image is an orthophoto with 0.3 m resolution (Source: 
USGS). 

 
Figure 1: Example Showing Tree Center Estimation Using a 

Sample Overhead Image of a Pine Forest 

Figure 1 shows that for a relatively dense cluster of trees, a 
visually correct result in terms of the locations of tree 
centers is obtained. The following are some general 
constraints: 

• Accuracy of estimated tree centers depends on the 
view angle (perspective) of the image. Therefore 
for best results and to reduce the effect of parallax, 
the area of the forest of interest needs to be as close 
to the nadir of the image as possible.  

• The average diameter of a tree crown is 
recommended to be at least an order of magnitude 
larger than the pixel resolution of the input image 
[5]. This means that pixel resolution of an input 
image needs to be around 0.3 m in order to detect 3 
m crowns. 



  

III.  TREE STEM CENTER ESTIMATION FROM ROVER LIDAR 
DATA 

As discussed in Section I, the rover is expected to acquire 
LiDAR data of the forest environment around it for 
subsequent use by the tree center estimation algorithm. It is 
noted that the algorithm discussed in this section is based on 
prior work by McDaniel et al [6].  

Based on input LiDAR data such as that shown in Figure 2, 
the ground plane is estimated first in order to constrain the 
search space. This is accomplished by tessellating the 
LiDAR point cloud into 0.5x0.5 m cells across the horizontal 
plane. Each cell is identified by a unique (row, column) 
index. Based on the cluster of points within each cell, the 
point with the lowest height is initially labeled as ground.   

 
Figure 2: A Sample Showing LiDAR Data of Tree Stems [6] 

Due to underbrush, not every point selected in the previous 
step represents true ground. Therefore, a classifier is utilized 
to filter data using metrics such as: the number of 
neighboring points, their geometry and ray tracing scores. 
Filtered data is then provided to another classifier that 
utilizes Support Vector Machine (SVM). If a cell contains a 
point labeled by the classifier, it is treated as true ground. 
Interpolation is performed for cells that do not have points 
labeled by the classifier.  

The next step involves identifying the extents of stems using 
threshold and clustering methods. To identify which LiDAR 
point belongs to the main stem, a simple height-above-
ground filter is used. Any points below the selected height 
threshold are discarded and classified as underbrush. Based 
on the dataset obtained, the team empirically identified that a 
height threshold of 2 m is adequate. Filtered data is then 
clustered following a single-linkage clustering method, 
which classifies two points to belong to a single cluster if 
they are in close proximity to each other (within a 
predefined distance threshold) [7].  

 
Figure 3: Example Showing Cylinder Fitment [6] 

Finally, model cylinders are fit as primitives to the LiDAR 
data using a least squares scheme (Figure 3). R denotes the 
radius of the model cylinder while r denotes the estimated 
radius of curvature of the stem transect containing LiDAR 
data. The fit between the cylinder primitive and data is found 

by solving the following optimization problem where n is 
the number of points in a cluster, x is the transect containing 
LiDAR points pertaining to the identified stem and fi is the 
distance from the ith point to the surface of the cylinder 
primitive.  

arg𝑚𝑖𝑛𝑥∈ℜ3 = 1
2

 ∑ 𝑓𝑖2(𝒙)𝑛
𝑖=1       (2) 

Following the optimization step, tree stem centers are 
estimated based on the curvature of each fitted cylinder. 
Lastly, the location of each estimated tree center in the 
horizontal plane is incorporated into a tree center map that 
could be used by the matching algorithm discussed in 
section IV. 

IV. MATCHING OF TREE CENTERS FROM OVERHEAD 
IMAGERY AND LIDAR DATA 

The last component of the vision-based localization 
algorithm involves matching tree center maps from the 
LiDAR and overhead image to estimate the horizontal 
geoposition of the rover. Prior to invoking the matching 
process, both maps are converted to the WGS84 reference 
system. The datasets are then provided to an Iterative 
Closest Point (ICP) algorithm that estimates the horizontal 
translation and rotation vectors required to fit them together. 
More precisely, the tree center map derived from the 
overhead image is treated as the baseline upon which the 
LiDAR based tree center map is matched to. This is because 
the map obtained from the overhead image is usually larger 
than the local map generated from the LiDAR dataset.  

The ICP implementation follows the Besl-McKay (point-to-
point) framework given as follows [8,9]: 

arg min Ε𝑝,𝑞∈ℜ2 =  1
𝑁
∑ (𝑅�⃑ × 𝑝𝑖𝑁
𝑖=1 + 𝑡  −  𝑞⃑𝑖)2     (3) 

Where E is the average distance error between both maps. R 
and t are the rotation and translation vectors respectively. P 
and q are points in the tree center maps generated from the 
LiDAR and overhead image datasets respectively. N is the 
total number of points in the LiDAR tree center map. A 
match is found by employing least squares to find the 
minimum of the error expression E. Figure 4 shows a sample 
run of ICP at a single rover pose using data acquired from 
the Lake Mize site. 

 
Figure 4: Sample ICP Run for a Single Rover Pose 



  

In Figure 4, the circles denote stem centers generated from 
the overhead image. The plus signs denote stem centers 
generated from a single LiDAR file at a particular rover 
pose. The asterisk shows the estimated rover position as a 
result of running ICP. As seen in Figure 4, the closeness of 
the points in both datasets shows that a good match was 
found. In fact, the match was found with a reported average 
point-pair accuracy of ~1 m (3 pixels). It is noted that in 
Figure 4, the axes represent easting and northing with 
respect to a local predefined reference point for that dataset. 

The ICP algorithm implemented as part of this paper has the 
following properties: 

• The search space is constrained to a 35x35 m box 
centered on the last known position of the rover and 
projected onto the baseline dataset (stem centers 
from overhead imagery). This optimum search 
space size was determined following an empirical 
investigation of the accuracy and processing time 
performance of ICP using different search space 
sizes and shapes. In particular, a 35x35 m search 
space enabled us to maximize position accuracy 
while minimizing processing time.  

• The ICP algorithm always provides a result and 
produces the best found match along with a 
cumulative error metric (parameter E in eq. 3). 
Good candidate matches produce low E while 
inadequate matches result in a large E. The error E 
depends on the final cumulative distance error 
between both datasets and the number of points in 
the LiDAR based stem center map. 

V. RESULTS 

The vision-based localization algorithm was completely 
developed in Matlab and was tested with real-world data. 
Survey grade LiDAR data was collected of a test site located 
northeast of Lake   in Florida, USA, with coordinates (Lat: 
N29.73°, Long: W82.21°). The data was provided by the 
University of Florida and was acquired by a Leica 
ScanStation-2 LiDAR system at multiple survey stations 
within the area bounded by the rectangular box in Figure 5. 
The area is approximately 110x110 m and the LiDAR 
dataset has a spatial resolution of approximately 10 cm (on 
ground). The area is exclusively comprised of pine trees 
with moderate to dense underbrush. Through manual 
inspection, 561 tree stems were identified and labeled for 
benchmarking purposes. 

In total, 4 high-resolution orthorectified images of the test 
site were acquired from USGS. The images were provided in 
GeoTiff format and were all captured in the visible 
spectrum. All images were provided in the UTM coordinate 
system. 

Without access to a real rover, and to simulate the envisaged 
operational scenario, a ground vehicle was simulated in 
Matlab traveling along a 4-sided polygonal path and using as 
input the acquired LiDAR data. The simulated rover path is 
illustrated in red as shown in Figure 5. More specifically, the 
acquired LiDAR data from the Lake Mize site was gridded 
using 10x10 m cells that were incrementally fed to the vision 
based localization algorithm at each pose. Figure 6 shows 

the simulated rover path and all identified stem centers in the 
LiDAR dataset. It is noted that the rover path is composed of 
234 poses that are 0.5 m apart. 

 

 

 

 

 

 

 
 

 

Figure 5: Test Site Northeast of Lake Mize (Source: USGS) 

 
Figure 6: Simulated Rover Path and LiDAR Based Stem 

Centers  

Table 1 summarizes the key properties of the acquired 
overhead imagery and LiDAR data such as size, resolution 
and accuracy. It is noted that Aerial Image 1 and 2 were 
taken of the same area but with different sensors and at 
different dates. 

Table 1: Properties of Data Products Used in Testing 

Dataset 
Type 

Properties Horizontal  
Accuracy  

RMS 
Aerial 

Image 1 
Visible, 5000x5000 pixels,  
0.3 m resolution 

2.1 m 

Aerial 
Image 2 

Visible, 5000x5000 pixels,  
0.3 m resolution 

2.1 m 

Aerial 
Image 3 

Visible, 8000x8000 pixels,  
0.5 m resolution 

2 m 

LiDAR 0.1 m resolution (Average) 0.01 m 
 

Based on the simulation setup, 3 tests were conducted using 
the same LiDAR dataset but with 3 different overhead 

Rover Path 

Test Site  
 



  

images as listed in Table 1. In terms of the LiDAR dataset, 
since it is of high accuracy (1 cm RMS), it was treated as the 
ground truth upon which geoposition estimates from the 
vision-based localization algorithm are compared against. 
More specifically, for each test run, the algorithm’s 
estimated rover position is graphed along with the 
corresponding GPS location derived from the overlay of the 
simulated rover path onto the raw LiDAR data. To assess the 
accuracy of position estimates, the horizontal positional 
error between the estimate provided by the vision based 
localization algorithm and the GPS ground truth is 
calculated. Due to the convergence properties of ICP, the 
matching algorithm requires an initial estimate of the 
location of the rover in order to avoid convergence to an 
incorrect local minimum. Therefore, at the start of the 
simulation the GPS location of the simulated rover at the 
first pose is given to ICP as a seed upon which matching is 
initiated. For subsequent poses, position estimates by ICP of 
the previous poses are used as seeds. In cases where large 
jumps in position estimates are observed, the estimate with 
the least deviation from the average is selected. 

4 test runs in total were performed. 3 tests were fully 
automated (i.e. processing and labeling of input data were all 
conducted by the vision based algorithm in an end-to-end 
fashion). One test bypassed the tree crown delineation and 
center estimation algorithm and instead used a manually 
handpicked tree center map using Aerial Image 2. This test 
allowed us to decouple the performance of the vision based 
tree crown delineation and center estimation algorithm from 
the overall accuracy performance of the matching algorithm.  

Figure 7 and Figure 8 show results from an end-to-end test 
of the localization algorithm using Aerial Image 2. Figure 9 
and Figure 10 show results from the manual test that also 
used Aerial Image 2. The mean position error and the 
standard deviation for all test runs are summarized in Table 
2. Considering the end-to-end test using Aerial Image 2, the 
mean rover position error is 4.76 m, which is about 14% of 
the linear dimension of the 35x35 search space box. In 
particular, as seen in Figure 8, the majority of rover poses 
(107 to be specific) resulted in less than 2 m positional error 
between GPS and the estimation provided by the matching 
algorithm. This is a good result considering that the spatial 
accuracy of Aerial Image 2 is 2.1 m RMS. It is noted that 
due to occlusion by heavy underbrush, no tree stems were 
detected in several poses. These poses were therefore 
discarded and shown as gaps in the rover path as seen in 
Figure 7 and Figure 9. 

Three factors play a major role in determining the positional 
accuracy of the vision-based algorithm: i) Accuracy of the 
input datasets (aerial and LiDAR). ii) Validity of the tree 
stem centers estimated from aerial imagery, and iii) Validity 
of the tree stem centers estimated from LiDAR. The second 
and third factors are very important in that they can easily 
affect the positional accuracy reported by the algorithm. If 
several tree centers were mislabeled the matching algorithm 
would have difficulties finding the true matches. In cases 
when erroneous tree centers are present in a data set, ICP 
would certainly provide a biased result. Online filtering 
techniques could be used to mitigate this issue. This is part 
of the scope of upcoming work on the algorithm.  

 
Figure 7: Result from End-to-End Test using Aerial Image 2 

 
Figure 8: Histogram of End-to-End Test Using Aerial Image 2 

 
Figure 9: Result from Manual Test Using Aerial Image 2 

 
Figure 10: Histogram of Manual Test Using Aerial Image 2 



  

To further understand the effect of mislabeled tree centers on 
position estimation accuracy, and as discussed previously, a 
manual test was conducted as a benchmark. Figure 9 and 
Figure 10 show the accuracy performance of the matching 
algorithm using a manually handpicked tree center map that 
was generated from Aerial Image 2. As seen in Figure 9 and 
Figure 10, geoposition error figures as reported from the 
manual test showed a much improved performance 
compared to results obtained from the end-to-end tests. In 
fact, the mean position error of the manual test was reduced 
by almost 50% compared to the results from the other tests. 
Results from all four tests are summarized in in Table 2. 

Table 2: Summary of Test Results 

Aerial 
Image 

Type of 
Test 

Average 
Position Error 

(m) 

Standard 
Deviation 

(m) 
1  End-to-end 5.41 4.42 
2  End-to-end 4.76 3.97 
2  Manual 2.79 3.38 
3  End-to-end 6.83 5.63 

 

From Table 2, it is clear that as the aerial image resolution 
worsens, the mean position error increases. This is the case 
with Aerial Image 3. The increase in reported geoposition 
error could also be attributed to color contrast. Qualitatively 
speaking, lower Red-Green-Blue (RGB) contrast in an aerial 
image results in worse delineation results. This has the 
potential to degrade the map matching performance of the 
algorithm and hence reduce the accuracy of position 
estimates. 

The difference in performance observed between the end-to-
end and manual tests show that the vision based tree crown 
delineation and center estimation algorithm produces some 
mislabeled tree centers. Qualitatively speaking, this behavior 
can be attributed to multiple factors, mainly: i) Tree crowns 
tend to merge in dense forests rendering the task of 
delineation tricky and not without uncertainty. ii) Some trees 
that are visible in the LiDAR dataset may not have visible 
crowns in the aerial imagery due to occlusions by taller 
trees. iii) Some trees that are visible in the aerial image may 
not be visible in the LiDAR dataset due to occlusions by 
other trees, underbrush or other obstructions. Therefore, 
operations in dense forests will usually inject certain 
uncertainties in the estimation of geoposition. Nevertheless, 
considering situations when GPS is unavailable or 
unreliable, the benefit of being able to localize using the 
method of this paper is anticipated to outweigh its reduced 
accuracy performance.  

VI. CONCLUSIONS AND FUTURE WORK 

In conclusion, the localization algorithm presented in this 
paper has the following properties that make it significant: i) 
It enables rover position estimation by strictly using vision 
data from ground LiDAR and overhead visible imagery of 
the area of interest. ii) Does not require external 
georeferenced landmarks to tie data together or perform 
corrections. iii) Furnishes a positioning capability that is 
completely decoupled from GPS to allow uninterrupted 

localization in situations when GPS becomes unreliable or 
inaccessible.  

The algorithm presented in this paper is considered a 
prototype that has constraints and limitations. In this phase 
of the project, the utility of the algorithm has been verified 
to provide reasonable horizontal position estimates using 
real-world data. Future improvements to the positioning 
accuracy of the algorithm are planned. These will involve 
improvements to the accuracies of the tree delineation and 
center estimation algorithm as well as to the LiDAR-based 
tree stem estimation algorithm. Aerial imagery with higher 
resolution and accuracy will be acquired to further enhance 
positioning performance. In addition, online filtering 
techniques will also be used to smooth position estimates 
and to discard anomalies. The end goal of the project is to 
further develop the method of this paper to a level where it is 
capable of providing geoposition estimates with accuracies 
that are on par with current GPS standards. 
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